A computational model of hippocampal function in trace conditioning
نویسندگان
چکیده
We introduce a new reinforcement-learning model for the role of the hippocampus in classical conditioning, focusing on the differences between trace and delay conditioning. In the model, all stimuli are represented both as unindividuated wholes and as a series of temporal elements with varying delays. These two stimulus representations interact, producing different patterns of learning in trace and delay conditioning. The model proposes that hippocampal lesions eliminate long-latency temporal elements, but preserve short-latency temporal elements. For trace conditioning, with no contiguity between cue and reward, these long-latency temporal elements are necessary for learning adaptively timed responses. For delay conditioning, the continued presence of the cue supports conditioned responding, and the short-latency elements suppress responding early in the cue. In accord with the empirical data, simulated hippocampal damage impairs trace conditioning, but not delay conditioning, at medium-length intervals. With longer intervals, learning is impaired in both procedures, and, with shorter intervals, in neither. In addition, the model makes novel predictions about the response topography with extended cues or post-training lesions. These results demonstrate how temporal contiguity, as in delay conditioning, changes the timing problem faced by animals, rendering it both easier and less susceptible to disruption by hippocampal lesions. The hippocampus is an important structure in many types of learning and memory, with prominent involvement in spatial navigation, episodic and working memories, stimulus configuration, and contextual conditioning. One empirical phenomenon that has eluded many theories of the hippocampus is the dependence of aversive trace conditioning on an intact hippocampus (but see Rodriguez & Levy, 2001; Schmajuk & DiCarlo, 1992; Yamazaki & Tanaka, 2005). For example, trace eyeblink conditioning disappears following hippocampal lesions (Solomon et al., 1986; Moyer, Jr. et al., 1990), induces hippocampal neurogenesis (Gould et al., 1999), and produces unique activity patterns in hippocampal neurons (McEchron & Disterhoft, 1997). In this paper, we present a new abstract computational model of hippocampal function during trace conditioning. We build on a recent extension of the temporal-difference (TD) model of conditioning (Ludvig, Sutton & Kehoe, 2008; Sutton & Barto, 1990) to demonstrate how the details of stimulus representation can qualitatively alter learning during trace and delay conditioning. By gently tweaking this stimulus representation and reducing long-latency temporal elements, trace conditioning is severely impaired, whereas delay conditioning is hardly affected. In the model, the hippocampus is responsible for maintaining these long-latency elements, thus explaining the selective importance of this brain structure in trace conditioning. The difference between trace and delay conditioning is one of the most basic operational distinctions in classical conditioning (e.g., Pavlov, 1927). Figure 1 is a schematic of the two training procedures. In trace conditioning, a conditioned stimulus (CS) is followed some time later by a reward or uncon-
منابع مشابه
Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model.
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, wh...
متن کاملRunning head: HIPPOCAMPAL THETA ACTIVITY AND TRACE CONDITIONING Hippocampal theta-band activity and trace eyeblink conditioning in rabbits
We aimed to examine the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted faste...
متن کاملActivity affects trace conditioning performance in a minimal hippocampal model
Using a minimal hippocampal model, previous studies simulating trace conditioning have reproduced the empirically observed learnable trace interval and reproduced the number of training trials required for learning. However, these earlier studies did not address the effects of parameterization on performance. Here, we demonstrate a robust effect of average activity on trace conditioning perform...
متن کاملHippocampal theta-band activity and trace eyeblink conditioning in rabbits.
The authors examined the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted fast...
متن کاملIncreasing CS and US longevity increases the learnable trace interval
It has been hypothesized that increasing CS longevity affects performance on trace conditioning. Using a hippocampal model, we find that increasing CS and US longevity increases learnable trace interval. As a matter of fact, over a modest range, maximal learnable trace interval is approximately a linear function of CS/US longevity.
متن کامل